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Vortex harmonics with fractional average orbital angular momentum are generated when a relativistic fractional
vortex beam is incident on and reflected from an over-dense plane plasma target. A two-step model is presented
to explain the far-field patterns of the harmonics. In the first step, a fundamental spot-shaped hole is produced
during the hole-boring stage, and harmonics are generated simultaneously. In the second step, different order
harmonics are diffracted by the hole and propagate to the far field. This process can be accurately described by
the Fraunhofer diffraction theory. This work facilitates a basic recognition of fractional vortex beams.
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Light beams carry both spin angular momentum (SAM)
and orbital angular momentum (OAM) in their direction
of propagation. The average value of the SAM is associ-
ated with the polarization state, zero for linear polariza-
tion and þ1 and −1 for left and right polarization,
respectively. The OAM is related to the spatial structure
of wave fronts. Beams with an azimuthal phase term
expðilϕÞ have an OAM that is linked to the azimuthal
component of the Poynting vector[1,2], where l is the topo-
logical charge (TC), and ϕ is the azimuthal angle. There is
a dark point in the transverse intensity because such a
field has an on-axis singularity profile. In particular, it
has been verified that the OAM of a vortex beam enables
them to rotate trapped particles and have a great appli-
cation in optical micromanipulation[3–6]. These vortex
beams can be generated in many ways, such as the geomet-
ric optics mode conversion method[7], computational
holography[8], spatial light modulator[9,10], and spiral phase
plate (SPP)[11,12].
However, the majority of previous studies have investi-

gated integer vortex beams, and focused optical vortices
have also been studied[13,14]. Very few studies have
examined the relativistic mechanism of fractional vortex
beams[15]. In contrast to the circularly symmetric intensity
of integer vortex beams, fractional vortex beams have a
gap on the bright ring, which means that fractional vortex
beams may provide more controllable parameters. In-
creasing attention has been given to fractional vortex
beams[16–23] because of their unique advantage in optical
communications, particle handling, and other applica-
tions. In 2004, Berry[16] studied fractional vortex beams
for the first time, to the best of our knowledge. It was
noted that fractional optical vortices are formed by the

linear superposition of infinite integer vortices and that
the half-integer TC is a critical condition in the generation
of a new vortex. Diffraction, one of the fundamental prop-
erties of a beam, has been studied for integer and frac-
tional vortex beams by many groups[24–27]. Colorful
diffraction patterns are always related to the TC of the
beam and facilitate numerous new means of detection.
In addition, the evolution of the diffraction patterns
has some guiding significance for the study of relativistic
fractional vortex beams. The relativistic vortex beam can
be defined in the same way as a Gaussian beam. The nor-
malized dimensionless number a0 ¼ eA0

mec2
is defined as the

normalized vector of the laser, where e is the elementary
charge, A0 is the potential of the light field, me is the elec-
tron mass, and c is the vacuum speed of light. When
a0 ¼ 1, the transverse speed of the electron is close to
the speed of light. Therefore, the intensity corresponding
to a0 ¼ 1 is defined as the relativistic threshold of laser
intensity.

In this study, the diffraction of fractional vortex har-
monics is investigated for a relativistic fractional vortex
beam irradiating a plasma target, which is successfully
explained by a two-step model. In the first step, the frac-
tional vortex beam is incident on the target and produces
a spot-shaped hole during the hole-boring (HB) stage, and
harmonics are generated simultaneously. In the second
step, harmonics are diffracted by the hole and propagate
to the far field, which is calculated using the Fraunhofer
diffraction theory. Besides, the diffraction of harmonics
driven by the fractional vortex beams is compared
with cases of integer vortex beams, which show that
the diffraction effects on the generation of harmonics be-
come apparent with an increase in the harmonic order for
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both fractional and integer vortex beams. This work facil-
itates not only a basic recognition of fractional vortex
beams but also suggests some possible detection proce-
dures for the vortex beams with fractional average
OAM in the relativistic region according to the far-field
diffraction patterns of harmonics, which is important
for potential applications in quantum information and
multiple microparticle trapping and manipulation.
In the first step, three dimensional (3D) particle-in-cell

(PIC) simulation based on EPOCH[28] code is performed to
elucidate the mechanism of the fractional vortex beam ir-
radiating an over-dense plasma target. At t ¼ 0, the mode
of the driving fractional vortex beam is α ¼ 0.7, which
means that the phase increases by 2πα in a circuit of
the origin. The fractional vortex beam can be expanded
by integer Laguerre–Gaussian (LG) modes. Here, the
LG modes are described as

aðLGplÞ ¼ a0
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In this simulation, p ¼ 0, and the wavelength of the
beam is λ ¼ 0.8 μm. T ¼ λ∕c is the laser period. l is the
azimuthal index, and ϕ is the azimuthal coordinate.
The laser pulse has a normalized amplitude of a0 ¼
eE0∕meω0c ¼ 10 and a pulse duration of 27 fs (full width
at half-maximum), where e is the elementary charge, E0 is
the laser electric field amplitude, me is the electron mass,
ω0 is the fundamental frequency, and c is the vacuum
speed of light. The focal spot radius of the beam
is r0 ¼ 5λ. A sketch of the simulation is shown in
Fig. 1(a). The plasma target occupies the region 11λ <
x < 15λ in the propagation direction of the incident laser
beam, −10λ < y < 10λ and −10λ < z < 10λ in the trans-
verse direction. To be realistic, a pre-plasma is set at the
front of the target before the arrival of the main pulse, and
the electron density distribution can be expressed as

ne ¼
(
25nc exp

�
x−13λ
2λ

�
11λ ≤ x ≤ 13λ

25nc 13λ ≤ x ≤ 15λ
; (2)

where nc ¼ ε0meω0∕e2 is the critical density. The simula-
tion box is 15λ × 20λ × 20λ, and the number of spatial
grids is 600 × 600 × 600. Each is filled with two macro
electrons and two macro protons. At t ¼ 0, the laser pulse
enters the simulation box normally from the left boun-
dary. It should be noted that the electric field E and
the electron density ne are normalized to mecω0∕e and
nc, respectively, in the simulation.
At t ¼ 14T , the relativistic fractional vortex beam com-

pletely enters the simulation window, and the longitudinal
electric field amplitude is shown in Fig. 1(a). The corre-
sponding transverse intensity distribution averaged over

the entire pulse is shown in Fig. 1(b). This result indicates
that the beam has a gap on the bright ring, which can
provide more controllable parameters. When the pulse in-
teracts with the target, electrons are expelled from the
high intensity region to the low intensity region of the la-
ser as a result of the pondermotive force of the fractional
vortex beam. As seen in Fig. 1(c), the electrons are
expelled, and a hole is formed during the HB[29] process.
Compared with the transverse intensity distribution in
Fig. 1(b), it can be clearly seen that the hole shape on
the target is the same as intensity shape of the inci-
dent beam.

When the relativistic fractional vortex beam interacts
with the target, both a spot-hole and harmonics are
generated simultaneously. The harmonics are reflected
from the target and propagate to the far field. As shown
in the frequency spectrum in Fig. 1(d), harmonics that are
generated in the reflected beam are recorded at t ¼ 26T .
Here, the main harmonics are of odd orders, which agrees
well with the results of the vortex oscillating mirror
(VOM) model[30]. In the VOM model, the electron surface
oscillates harmonically against a fixed ion background and
radiates harmonics. Its oscillation phase consists of two
parts. The first part arises from the ponderomotive force,
which leads to the mirror oscillation in the longitudinal
direction. The second part is derived from the transver-
sally nonuniform ponderomotive force due to the vortex
beam. However, some weak even order harmonics also
appear, which may be caused by the intrinsic helicoid
wavefront of the incident vortex beam, as well as the

Fig. 1. (a) Electric field Ey of the incident pulse in the x–y plane
at z ¼ 0 at t ¼ 14T . (b) Transverse intensity distribution of the
incident beam averaged for the entire pulse at x ¼ 5λ [the black
dotted line in (a)] at t ¼ 14T . (c) Electron density distribution at
t ¼ 22T when the pulse arrives at the target surface. The black
lines in (b) and (c) are the outlines of the 1/e maximum intensity
of the incident beam and the hole of the target. (d) Frequency
spectrum of the laser field after interaction between the input
pulse and target. The field signal corresponds to y ¼ 2.5λ and z ¼
0 at t ¼ 26T .
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deformation of the target. Although the fractional vortex
beam is incident normally on the target, the wavefront
forms a small angle with the incident surface, resulting
in the generation of both odd and even harmonics. In this
case, we mainly consider the strong odd order harmonics
in this Letter. Here, it should be noted that there appears
to be a red shift, especially for high order harmonics due to
the HB process.
The electric fields of the harmonics for the fractional

vortex beam are asymmetric, and the corresponding aver-
age OAM is expected to be fractional, which is different
from the case of the integer vortex beam. The transverse
electric fields and intensity distributions of harmonics in
the near-field are shown in Fig. 2. Figures 2(a1)–2(d1)
show the transverse electric field distributions, and
Figs. 2(a2)–2(d2) show the intensity distributions of the
first, third, fifth, and seventh harmonics of the reflected
beam at x ¼ 5λ at t ¼ 26T . There is still one gap on
the bright ring in the transverse intensity distributions
of the harmonics, which are “C”-like shapes that are sim-
ilar to the density shape of the incident fractional vortex
beam [Fig. 1(b)].
The 3D PIC simulation illustrates the first step well,

where a fractional vortex beam is incident on a target
and produces a spot-shaped hole during the HB stage,
and harmonics are generated simultaneously. However,
what can be measured by a charge-coupled device
(CCD) in actual experiments are transverse patterns
in the far field. Because the accuracy and simulation
distance in the PIC simulation are limited, only harmon-
ics in the near-field can be obtained. Therefore, harmon-
ics propagating to the far field should be considered,
which can be realized by diffraction theory in the
second step.
Before analyzing the diffraction in the second step, it is

necessary to determine the specific expressions of the fun-
damental and harmonics of the fractional vortex beam.
The expressions can be obtained by the following steps.
Firstly, the mode αn of the nth harmonic is obtained based
on the conservation of the average OAM. Secondly, the
fractional vortex harmonics are expanded using integer
modes, and their OAM spectrum is shown. The objective

of this step is to obtain a reasonable superposition range of
integer modes. Finally, the specific expressions of each
fractional vortex harmonic are obtained by expanding into
the superposition of a finite reasonable number acquired in
the last step.

Firstly, for the vortex beam with fractional average
OAM, its mode is related to its average OAM, which is
expressed as[20]

OAM ¼ α− sinð2απÞ∕2π: (3)

It has been verified that the average OAM is
conservative during the harmonic generation of fractional
vortex beams[15,31,32], where OAMn ¼ nOAM0. Therefore,
based on the conservation law of the average OAM, the
mode αn of the nth harmonic can be derived as

αn − sinð2αnπÞ∕2π ¼ n½α0 − sinð2α0πÞ�∕2π: (4)

Figure 3 shows the relation between the mode αn of the
nth harmonic and the harmonic order n for the fundamen-
tal frequency beam with α0 ¼ 0.7. This is different from
the scaling relation (the gray dotted line) for an integer
vortex beam between nα0 and the harmonic order n.
It can be determined that the modes of the first, third,
fifth, and seventh harmonics are α1 ¼ 0.7, α3 ¼ 2.5272,
α5 ¼ 4.3718, and α7 ¼ 5.8129, respectively.

Secondly, the fractional vortex beam can be expanded
by the superposition of integer vortex beams, and the
superposition is determined by the Fourier series

expðiαϕÞ ¼ expðiπαÞ sinðπαÞ
π

×
Xþ∞

m¼−∞
½expðimϕÞ∕α−m�:

(5)

Thus, the probabilities of each integer mode are
jCmj2 ¼ sin2ðπαÞ∕π2ðα−mÞ2, where m is the mth integer
mode with a TC m. Therefore, the OAM spectrum of dif-
ferent harmonics can be obtained as shown in Fig. 4. It is
clearly shown that a vortex beam with fractional average
OAM is superposed, mainly by its nearest two integer

Fig. 2. Reflected transverse electric field distributions of the (a1)
first, (b1) third, (c1) fifth, and (d1) seventh harmonics in the
z–y plane at x ¼ 5λ and t ¼ 26T . Corresponding transverse in-
tensity distributions of harmonics averaged on entire pulse are
shown in (a2)–(d2).

Fig. 3. Relation between the mode αn of the nth harmonic and
its harmonic order n for the fundamental frequency beam with
α0 ¼ 0.7. The gray dotted line is the scaling relation between nα0
and the harmonic order n.
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modes (0 and 1 for α0 ¼ 0.7, 2 and 3 for α3 ¼ 2.5272,
4 and 5 for α5 ¼ 4.3718, 5 and 6 for α7 ¼ 5.8129). There-
fore, it is sufficient to superpose the integer modes from
−100 to 100 in our following calculation.
Finally, it has been demonstrated that the paraxial frac-

tional vortex field propagating in the x direction with
a Gaussian intensity distribution can be described as[16]

(normalized to wavenumber k ¼ 1)

Eðx; y; zÞ ¼ exp½iðx þ παÞ� sinðπαÞ
π

�������������������������
1þ ix∕ωG

2
p

×
Xþ∞

m¼−∞
½expðimϕÞPmðρÞ∕α−m�; (6)
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(7)

where ωG is the Gaussian spot width. ρ ¼ 	 y��
x

p ; z��
x

p


, and

J ðjmj�1Þ∕2ðρÞ is the Bessel function of the first kind. Based
on the OAM spectrum in the last step, it is reasonable to
take the m from −100 to 100. Therefore, the fractional
vortex beam can be expressed by

Eðx; y; zÞ ¼ exp½iðx þ παÞ� sinðπαÞ
π

�������������������������
1þ ix∕ωG

2
p

×
Xþ100

m¼−100

½expðimϕÞPmðρÞ∕α−m�. (8)

Thus, the specific expressions of the fundamental and har-
monics of the fractional vortex beam have been acquired.
The far-field diffraction patterns of the harmonics can

be obtained by performing a Fourier transform of the

complex amplitude distribution on the hole plane in space,
given by

Eðy; zÞ ¼ −
i

λxhole
expðikxholeÞ exp½ikðy2 þ z2Þ∕ð2xholeÞ�

×
ZZ

Eðyhole; zholeÞ exp½−i2πðf yyhole
þ f zzholeÞ� dyhole dzhole;

(9)

where f y, f z are spatial frequency, f y ¼ y
λxhole

, f z ¼ z
λxhole

. In

our calculation, the electric field before the hole is described
by Eq. (8), where x ¼ 11λ. The shape of the hole is defined
by the contour of the 1/e maximum intensity of the funda-
mental frequency. The transmittances inside and outside
the hole are 100% and zero, respectively. The receiving
screen is placed in the far field (5000λ in our calculation,
which is considered infinite) behind the hole. It should
be noted that what we are interested in is the morphology
of these intensity profiles, which are normalized to the
maximum intensity of the incident beam.

According to the aforementioned theory, the diffraction
patterns of the harmonics for the fractional vortex beam in
the far field can be obtained. As shown in Figs. 5(a1)–
5(d1), the mode of the incident fractional vortex beam
is α0 ¼ 0.7, and the hole has the same shape as the incident
beam, which is shown in the bottom left of Fig. 5(a1). The
first to seventh harmonics are diffracted by the hole, and
the corresponding diffraction patterns in the far field
are shown in Figs. 5(a1)–5(d1). This result indicates
that the transverse diffraction patterns are still generally
“C”-shaped, but the spots split into several irregular lobes
in the inner part and broken diffraction fringes in the outer
part. Besides, the distortion becomes heavier with an in-
crease of the harmonic order.

In the case of the integer vortex beam, considering the
LG beam for example, an annular hole[33] can be produced
in the first step, as shown in the bottom left of Fig. 5(a2).
For the case of LG01, the diffraction patterns of all the

Fig. 4. Superposition of (a) first, (b) third, (c) fifth, and
(d) seventh harmonics for different integer modes.

Fig. 5. Fraunhofer diffraction patterns of first, third, fifth, and sev-
enth order harmonics of fractional (first row) and integer (second
row) vortex beams under different conditions. The illustrations in
the bottom left of the first column are corresponding holes.
(a1)–(d1) Fundamental fractional vortex beam with α0 ¼ 0.7
diffracted by the hole shape of α0 ¼ 0.7. (a2)–(d2) Fundamental
integer vortex beam LG01 diffracted by the hole shape of LG01.
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harmonics are regular concentric diffraction rings. With
an increase of the harmonic orders, more diffraction rings
appear, and the radius of the hollow structure becomes
larger because the TC is proportional to the har-
monic order.
Comparing the diffraction patterns of harmonics for

fractional and integer vortex beams, it can be found that
different harmonics have their own unique characteristics.
Consequently, the diffraction patterns may provide some
potential detection methods for the vortex beam with frac-
tional average OAM during relativistic interaction accord-
ing to the far-field diffraction patterns of the harmonics.
From the calculations and previous discussions, it can

be concluded that the Fraunhofer diffraction pattern is
mainly determined by the hole shape, while the hole shape
is determined by the shape of the incident laser beam.
Therefore, the far-field diffraction patterns of the harmon-
ics are mainly related to the incident laser, as demon-
strated by our two-step model.
It has been shown that harmonics can be generated and

propagate to the far field when a relativistic fractional
vortex beam irradiates a solid target. The details of this
process were successfully calculated using a two-step
model. In the first step, a fundamental spot-shaped hole
is produced by an incident fractional vortex beam, and
harmonics are generated simultaneously. In the second
step, harmonics are diffracted by this hole and propagate
to the far field. This work not only is of fundamental
importance for the understanding of the relativistic frac-
tional vortex beam interaction with plasmas, but also sug-
gests some potential detection procedures for the vortex
beam with fractional average OAM during relativistic
interaction based on the far-field diffraction patterns of
harmonics, which is important for potential applications
in quantum information and multiple microparticle trap-
ping and manipulation.
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